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Abstract
Background  A high number of stillborn piglets has a negative impact on production and animal welfare. It is an 
important contributor to piglet mortality around farrowing and continues to rise with the increase of prolificacy. The 
objective of this study was to build a predictive model of the stillborn rate.

Results  This study was performed on two farrow-to-finish farms and one farrow-to-wean farm located in Brittany, 
France. At each farm, the number of total born (TB), born alive (BA), stillborn piglets (S), the same data at the previous 
farrowing (TBn− 1, BAn− 1 and Sn− 1), backfat thickness just before farrowing and at previous weaning and parity rank 
were recorded in our dataset of 3686 farrowings. Bayesian networks were used as an integrated modelling approach 
to investigate risk factors associated with stillbirth using BayesiaLab® software. Our results suggest the validity of a 
hybrid model to predict the percentage of stillborn piglets. Three significant risk factors were identified by the model: 
parity rank (percentage of total mutual information: MI = 64%), Sn− 1 (MI = 25%) and TBn− 1 (MI = 11%). Additionally, 
backfat thickness just before farrowing was also identified for sows of parity five or more (MI = 0.4%). In practice, under 
optimal conditions (i.e., low parity rank, less than 8% of stillborn piglets, and a prolificacy lower than 14 piglets at the 
previous farrowing), our model predicted a stillborn rate almost halved, from 6.5% (mean risk of our dataset) to 3.5% 
for a sow at the next farrowing. In contrast, in older sows with a backfat thickness less than 15 mm, more than 15% 
of stillborn and a prolificacy greater than 18 piglets at the previous farrowing, the risk is multiplied by 2.5 from 6.5 to 
15.7%.

Conclusion  Our results highlight the impact of parity, previous prolificacy and stillborn rate on the probability of 
stillborn. Moreover, the importance of backfat thickness, especially in old sows, must be considered. This information 
can help farmers classify and manage sows according to their risk of giving birth to stillborn piglets.
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Background
Preweaning mortality is a multifactorial concern with an 
impact on productivity and animal welfare. Stillbirth and 
crushing are the two main causes of piglet death before 
weaning [1]. While the stillborn rate varies between 
countries, it continues to rise with the increase of sow 
prolificacy on breeding farms [2, 3]. In a recent study, 
reported stillborn rates varied between 7.2 and 9.5% in 
six different European countries [4]. In another study, the 
stillborn rate reached, on average, 15.4% [5]. The litera-
ture contains extensive reports on factors that influence 
stillbirth. First, farrowing characteristics such as litter 
size, placental weight, location of the foetus in the uterus, 
duration of farrowing, birth interval, stress and human 
assistance can affect stillborn rates [6–10]. Additionally, 
it has been demonstrated that a sow with a backfat thick-
ness (BFT) before farrowing greater than 21 mm has an 
increased risk of dystocia, leading to a higher stillbirth 
rate [11, 12]. Sows that are thin at the time of farrowing, 
also showed a high level of stillbirth together with a ten-
dency to have a lower prolificacy and earlier culling [13, 
14]. A farrowing duration of more than 300 min induces 
stress and consequently tends to increase the stillborn 
rate [15]. Moreover, non-infectious factors such as the 
genetic type of the sow, parity rank, nutritional deficien-
cies and housing conditions should be considered [16–
20]. Non-infectious effects on piglets (weight, sex and 
vitality at birth) should also be taken into account [21, 
22]. Finally, infectious factors, such as porcine respira-
tory and reproductive syndrome (PRRS), infection with 
pathogenic Leptospira, porcine circovirus type 2, and 
swine influenza, should be investigated and managed. In 
parallel, it should be borne in mind that preweaning mor-
tality increases with the stillborn rate [23, 24].

Several control measures can be suggested based on 
these recent findings to reduce the risk of stillbirth, 
thereby reducing preweaning mortality on farms. How-
ever, the effective implementation of these upstream 
interventions relies on farmer involvement, primarily by 

monitoring at-risk sows, but also by improving condi-
tions for successful farrowing, i.e. less stress and an opti-
mal environment [25]. Bayesian networks constructed 
using machine-learning algorithms provide a potential 
approach to the above-mentioned challenges to charac-
terize the risk of stillbirth for each sow. Instead of relying 
on a mechanistic description of these risk factors, Bayes-
ian networks can estimate the percentage of stillborn by 
describing conditional dependencies among variables in 
observational datasets.

To the best of our knowledge, no study on stillbirth 
has developed a predictive model to identify at-risk sows 
since the one proposed by T.E. Blackwell in 1987 [26]. 
This old grid aimed to determine the risk of stillbirth in 
sows according to their parity and previous farrowing 
characteristics. In this context, the aim of our study was 
to construct a predictive model of the stillborn rate using 
Bayesian networks, with the goal of providing practical 
tools for decision-making on the implementation of pre-
ventive measures.

Materials and methods
Included farms and recorded data
This study was performed on two farrow-to-finish farms 
and one farrow-to-wean farm located in Brittany, France. 
The farm characteristics and vaccination protocols in 
place in livestock are described in Table 1.

During the study period, the three farms were regularly 
monitored for PRRS stability according to the Ameri-
can Association of Swine Veterinarians classification 
procedure [27]. The farms were also regularly visited 
by veterinary practitioners and no clinical signs of por-
cine diseases that should be included in the differen-
tial diagnosis of stillbirth were observed. On each farm, 
nine explanatory variables were recorded: namely, the 
parity rank, the number of total born (TB), the number 
born alive (BA), the number of stillborn piglets (S) and 
the same data at the previous farrowing (TBn− 1, BAn− 1 
and Sn− 1). The backfat thickness (BFT) at the previous 

Table 1  Farms1 characteristics and sow vaccination protocols
Farm 1 Farm 2 Farm 3

Farm management farrow-to-finish farrow-to-finish farrow-to-wean
Number of sows 1000 600 600
Batch management 10 batches/2 weeks 10 batches/2 weeks 20 batches/week
Age at weaning ± SD (days) 23 ± 1.4 23 ± 1.4 23 ± 1.4
Maternal genetic type F. LW x F. LD F. LW x F. LD F. LW x F. LD x TZ
Paternal genetic type Pietrain Pietrain Pietrain
Sow vaccinations PRRS MLV, parvovirus, swine erysipelas, 

Escherichia coli
PRRS MLV, parvovirus, swine erysipelas, 
Escherichia coli and Clostridium perfringens 
type C

PRRS MLV, parvovi-
rus, swine erysipe-
las, Escherichia coli 
and Clostridium 
perfringens type C

1Farms randomly coded as 1,2, or 3 due to anonymity requirements. F. LW: French Large White, F. LD: French Landrace, TZ: Tai Zumu, PRRS MLV: Porcine Respiratory 
and Reproductive Syndrome Modified Live Virus, SD: Standard Deviation
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weaning and just before farrowing were also recorded. 
The backfat thickness was calculated according to the 
average of measurements performed on the left and right 
sides of the sows at the P2 position (Renco Lean-Meater®, 
Minneapolis, USA).

Calculation of stillborn rates and variable discretisation
In practice, it is easier to use the percentages of stillborn 
rather than the raw data. For this purpose, the stillborn 
rates at farrowing (%S) and at the previous farrowing 
(%Sn−1) were calculated as follows:

	
%S =

S

TB
× 100

	
%Sn-1 =

Sn-1
TBn-1

× 100

Additionally, several categories were created to improve 
the readability of the results. Regarding the parity, three 
categories were defined: gilts and sows of parity two 
together, parities three and four together and older sows 
(parities 5 and more). This categorization was based on 
field practices and allowed us to streamline the analysis 
while retaining sufficient differentiation to identify risk 
factors effectively. Different categories were also created 
for the variables TBn−1, %Sn−1, and BFT before farrow-
ing following the automated thresholds development by 
the software (Table 2). Indeed, during model training, the 
software identified and established additional thresholds 
(e.g., 15% for high-risk stillborn rates) which were not 
initially set by the researchers. These thresholds were 
based on the underlying data distribution and the model’s 

learning process. Simulations and sensitivity analyses 
were conducted to validate these results, ensuring that 
the thresholds were robust and meaningful within the 
context of the dataset.

Definitions and statistical analysis
The quantitative data were recorded in an Excel database. 
The average values (± standard deviation) of each vari-
able were calculated for each selected farm. In addition, 
a Bayesian analysis framework was applied to predict the 
stillborn rate using BayesiaLab® software (Bayesia S.A.S., 
Bayesia USA, LLC, and Bayesia Singapore Pte). Bayesian 
networks have been developed as prediction and decision 
aids in a wide variety of applications. A Bayesian network 
is a graphical representation of the relationships among 
variables. In this study, the impacts of ten explanatory 
variables (including the farm effect) on the stillborn rate 
were analysed. The model included two components [28]:

1) A directed acyclic graph in which variables are 
represented as nodes and relationships among them 
as directed edges (one-way arrows).
2) A set of conditional probability distributions for 
each included variable representing its statistical 
dependencies on other variables in the network.

Bayesian networks present several advantages over tradi-
tional statistical modelling methods, including their abil-
ity to handle nonlinear relationships among variables and 
to include multiple, potentially highly correlated predic-
tor variables in one model [29].

When applied to our dataset, likelihood analysis 
was carried out to evaluate the prediction ability of the 

Table 2  Discretisation of variables used in the model
Variables measured Categories used
Parity rank = 0 and 1 (Gilts and parity 2)

= 2 and 3 (Parities 3 and 4)
= 4 and more (Parities 5 and more)

TBn−1 TBn−1 ≤ 14 piglets
14 < TBn−1 ≤ 18 piglets
TBn−1 > 18 piglets

%Sn−1 %Sn−1 ≤ 8%
8% < %Sn−1 ≤ 15%
%Sn−1 > 15%

BFT before farrowing BFT ≤ 15 mm
BFT > 15 mm

TBn−1: number of total born at previous farrowing, %Sn−1: stillborn rates at previous farrowing, BFT: backfat thickness.

Table 4  Overall analysis results
Nodes Mutual information1 Normalized mutual information2 Prior mean value3 G-test4 Df5 p-value
Parity 0.0582 3.6749% 0.8961 297.6 4 < 0.001
%Sn−1 0.0228 1.4416% 0.0562 116.8 4 < 0.001
TBn−1 0.0101 0.6384% 15.24 51.71 4 < 0.001
BFT 0.0003 0.0213% 16.66 1.725 2 0.388
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Bayesian network model. Owing to the artificial intelli-
gence of the software, the ability of the Bayesian network 
model to predict the impacts of nine individual param-
eters and the farm using the evidence in the stillborn rate 
node was evaluated. Moreover, a sensitivity analysis was 
carried out to measure the sensitivity of our target node 
(stillbirth as a percentage) in the posterior distribution to 
variations in the evidence entered in other nodes of the 
network. The evidence sensitivity was measured as the 
mutual information, I(X, Y), which represents the effect 
of one variable (X) on another variable (Y) and is calcu-
lated as follows:

I(X, Y) = H(Y) – H(X|Y).
where H(Y) is entropy, which is the measure of the 

uncertainty or randomness of a variable (Y) represented 
by a probability distribution [30, 31].

Model validation and testing
To validate the final model, a 10-fold cross-validation was 
used in supervised learning. In each iteration, nine differ-
ent training sets were used for training the model, while 
the remaining subsample was used for validation. In this 
study, the Markov feature was chosen as the learning 
algorithm. This process was repeated ten times, ensuring 
that each subsample served as a validation set once. The 
final model performance metrics were obtained by aver-
aging the results across all ten iterations.

Results
Data characteristics
In total, 3686 farrowing data events were recorded. All 
the descriptive results from the dataset are summarized 
in the Table 3. Our dataset included 43% of gilts and sows 
of parity 2, 24% of parities 3 and 4, and 33% of sows with 
parities 5 or more.

Considering the entire dataset, the average stillborn 
rate was 6.5% (corresponding to the average risk).

Final model
Ultimately, Bayesian networks, as an integrated modeling 
approach, produced a model with an average calibration 
accuracy of 92%, representing the model’s probability 
distribution based on our dataset. Additionally, the pre-
dictability based solely on our validation dataset was 72%, 
with a standard deviation of 2.09%. This model included 
only three significant risk factors for predicting the still-
birth rate. These factors included the stillbirth rate and 
the number of total born at the previous farrowing and 
the parity rank of the sow. A fourth factor, but only for 
sows with 5 or more parities, namely backfat thickness 
just before farrowing was also included in the final model.

The impacts of each significant risk factor, taken inde-
pendently, on the change of stillborn percentages are pre-
sented in Fig. 1:

In the three farms:

 	• The percentages of stillborn rates were lower than 
the baseline (6.5% in our dataset) for a gilt or parity 
2 sow and higher for parities 5 or more (Fig. 1.1). For 
example, in the farm 1, the percentage of stillborn 
was 50% higher for parities 5 and more compared to 
the baseline.

 	• The percentages of stillborn rates were lower than 
the baseline when the stillborn rate at previous 
farrowing was less than or equal to 8% and higher 
when it exceeded 8% (Fig. 1.2).

 	• Also, the percentages of stillborn rates were lower 
than the baseline when the number of total born was 
less than or equal to 14 piglets at previous farrowing 
and higher over 18 total born (Fig. 1.3).

In the farm 1, regarding the impact of BFT of parities 5 
and more, the percentages of stillborn rates were higher 
when BFT was less than 15 mm (Fig. 1.4).

The final model included nodes representing the vari-
ables and arcs (represented by arrows) representing the 

Table 3  Description of the dataset for the three selected farms1 according to the parity rank of sows (mean ± standard deviation)
Data outputs/ Parity rank Farm 1 Farm 2 Farm 3

1–2 3–4 5 + 1–2 3–4 5 + 1–2 3–4 5 +
Number of farrowings 1376 678 1037 116 118 90 103 83 85
Previous farrowing (n-1)
Total born/litter (TBn−1) 14.12 ± 2.8 14.55 ± 3.4 15.70 ± 3.2 15.93 ± 3.8 17.18 ± 3.2 17.83 ± 3.6 14.74 ± 2.4 15.43 ± 3.1 16.24 ± 3.8
% stillborn piglets (%Sn−1) 4.58

± 7.5
3.89
± 6.4

7.88
± 7.9

5.86
± 14.8

4.11
± 6.9

3.76
± 5.2

5.14
± 13.2

4.56
± 7.2

5.69
± 6.9

BFT at weaning, mm 12.76 ± 2.6 13.13 ± 2.8 13.69 ± 2.7 14.42 ± 3.3 15.20 ± 2.9 15.71 ± 3.3 11.68 ± 2.2 12.45 ± 2.0 12.60 ± 1.9
At farrowing (n)
Total born/litter (TB) 14.08 ± 3.0 15.29 ± 3.5 15.60 ± 3.4 16.12 ± 3.6 18.03 ± 3.3 17.66 ± 3.3 14.83 ± 3.1 15.84 ± 3.6 16.28 ± 3.5
Piglets born alive/litter 13.46 ± 3.0 14.22 ± 3.3 13.96 ± 3.1 15.47 ± 3.6 17.23 ± 3.0 16.64 ± 3.4 14.25 ± 2.9 15.01 ± 3.3 14.92 ± 3.0
% stillborn piglets 4.19

± 7.3
6.50
± 9.0

9.97
± 10.1

4.01
± 7.8

4.21
± 5.4

5.55
± 9.0

4.63
± 10.0

4.72
± 7.0

7.61
± 8.1

BFT before farrowing, mm 16.33 ± 3.1 16.59 ± 2.9 16.97 ± 3.1 17.77 ± 3.2 18.47 ± 3.6 19.00 ± 4.3 14.34 ± 2.3 15.84 ± 2.3 15.69 ± 2.7
1Farms randomly coded as 1,2, or 3 due to anonymity requirements. BFT: Backfat thickness
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direct probabilistic relationships between the connected 
variables (Fig. 2). Each node is associated with a probabil-
ity table describing the marginal probability distribution 
of the corresponding variable.

The strength of the relationships between two nodes 
directly connected by an arc is expressed by Kullback-
Leibler (KL) divergences (i.e., percentages of mutual 
information). KL divergences for parity rank, %Sn−1 and 
TBn−1 were 64%, 24% and 11%, respectively. This means 
that, for example, 11% of information (i.e. prediction) is 
explained by the number of total born at previous far-
rowing. Finally, the percentage of mutual information 
for the BFT variable is 0.4% if we consider all the pari-
ties. The characteristics of each significant variable are 
presented in the table below. For BFT before farrowing, 
this factor was significant only for parities 5 or more 
(p-value < 0.007). This is an important information to 
retain given the impact of body condition on farrowing 
performance.

1The mutual information measures the amount of infor-
mation gained on variable “stillbirth (%Sn)” by observing 
“Nodes”. 2Based on the mutual information, normalized 
mutual information includes a normalization factor. 3The 
prior mean value is the prior probability of event “still-
birth (%Sn)”. 4The G-test is a type of independence test 
used to determine if there is a significant association 
between two categorical variables (for example, for the 

first line, the association between parity and stillbirth 
rate). 5Df represents the “degree of freedom” between 
each driver node and the target node (%Sn). Significant 
main effects are indicated in bold (p-value ≤ 0.05).

With this model, we were able to easily calculate risk 
percentages for different situations according to risk fac-
tor categories (Table 5). Deviations from the average are 
obtained according to the data used to create the model.

For example, in the best conditions (namely a young 
sow that gave birth to fewer than 15 piglets at its previ-
ous farrowing with less than 8% stillborn), the model 
predicted a stillborn rate of 3.5% which represented a 
stillborn rate almost half that compared to the average 
risk of our dataset. In contrast, in the worst scenario – 
namely an older sow (parity five or more) with a high 
prolificacy (more than 18 piglets) and a marked stillborn 
rate (higher than 15%) at the previous farrowing – the 
predicted risk should be multiplied by 2.5 from 6.5 to 
15.7%. Finally, if the sow was less than 15 mm at farrow-
ing, the risk would increase further from 15.7 to 17.7%.

Discussion
In this study, a Bayesian network was used to create a 
model to predict stillborn percentages according to dif-
ferent risk factors namely: parity rank, stillborn rate and 
prolificacy at the previous farrowing, and backfat thick-
ness. Our results show that stillborn rates increase with 

Fig. 1  Effect of variables on the expected change in the stillborn rate compared to the baseline (fixed at 6.5% from our dataset) rate for the three farms 
included in the study

 



Page 6 of 9Teixeira Costa et al. Porcine Health Management           (2024) 10:42 

parity, stillbirth at previous farrowing and previous litter 
size. This is in accordance with the results published by 
Blackwell in 1987 which, to our knowledge, has not yet 
been updated [26].

Two main characteristics were chosen to describe the 
model’s performance. First, the average value of calibra-
tion was 92% which represents the probability distribu-
tion of the model obtained according to our dataset. 
Second, the model accuracy was 72% (standard devia-
tion 2.09%). This result shows that we have fewer than 
three chances out of 10 of giving a wrong prediction. This 
approach is strongly accurate for zootechnical studies 
based on field data [31]. Moreover, the model requires 
few parameters to calculate a risk of stillbirth making this 
tool easy to use and easy to implement in an operating 
system. The precision could perhaps have been improved 
with additional data such as: genetics, feed, season, and 
management because of the multifactorial nature of still-
born rates. However, a more elaborate model would be 
difficult to implement routinely on farms even if techni-
cal management software was available.

In our study, the average stillborn rate was 6.5%. It is 
also important to note that this study was conducted in 

three well-managed farms with an experienced workforce 
and good and consistent sanitary conditions. This find-
ing implies that the stillborn rate was in line with or even 
relatively low according to the latest French and Euro-
pean benchmarks, even if the distribution of the data was 
large [5, 32]. Thus, further studies to test the model on 
farms where different characteristics (other management 
practices, different genetic types, etc.) occur are needed 
and would be helpful to validate our results. Moreover, 
the applicability of this model to farms facing any major 
health issues requires further investigation.

Parity is a widely demonstrated risk factor, and the link 
between parity and duration of farrowing can probably 
explain a portion of these reports [33]. Furthermore, lit-
ter size has increased considerably in recent decades, 
subsequently increasing a higher stillborn rate with a 
greater number of total born [3, 34]. Our results are in 
accordance with the findings of Muro et al. (2022), who 
highlighted that the stillbirth rate increased with the 
increasing total number of piglets [18].

The percentage of stillborn at the previous farrowing 
was the second most important factor highlighted by our 
model. Two different thresholds were used to discretise 

Fig. 2  Final model obtained with BayesiaLab® software
KL: Kullback-Leibler divergences. The black bars represent the distribution for each variable.
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this variable (8 and 15% of stillborn) which allows us to 
be even more precise. Indeed, to our knowledge, there is 
no reference in the literature about such thresholds. Van-
derhaeghe et al. (2010) showed that having more than 
one stillborn piglet at the time of the previous farrow-
ing had a statistically significant impact on the stillborn 
rate at the time of the next farrowing [21]. Independent 
of the model, these cut-off values can therefore be useful 
in daily practice to ensure accurate monitoring of a sow’s 
performance development.

To a lesser extent, our model describes an increase 
in stillborn percentages for aged thin sows. In a previ-
ous study, Gourley et al. (2020) reported an increase in 
the stillborn rate in sows with decreasing backfat depth 
before farrowing [35]. This finding has been repeatedly 
confirmed in other studies [12, 36, 37]. However, in our 
study, a significant link between backfat thickness and 
the stillborn rate was not demonstrated for all parities 

but only for parities five or more. Even if only 0.4% of the 
mutual information is explained by this variable, we kept 
this data in our final model due to the fact that it is an 
easy-to-collect information in farms.

Overall, our model provides a useful framework for 
assisting in decision-making to reduce stillborn rates on 
pig farms. Indeed, several studies have demonstrated that 
attending farrowing could reduce stillbirths [38, 39]. Par-
ticularly, farrowing induction allow a better supervision 
facilitating human presence when needed. Monteiro et 
al. (2022) highlighted the benefit of farrowing induction 
as a tool for better obstetric assistance during farrowing 
and showed that this induction can reduce the risk of 
stillbirth by 28% [40]. Moreover, human presence helps 
to provide adequate care for piglets in the first hours of 
life. For example, the piglet’s oral and nasal cavities can 
be suctioned to clear any mucus or other debris during 
farrowing, which could improve mortality rate at birth. 

Table 5  Predicted stillborn rates and deviations from the average obtained from our dataset (6.5%) according to sow parity rank, 
stillbirth and prolificacy at previous farrowing and backfat thickness before farrowing
Parity rank Percentage of stillborn at previ-

ous farrowing
Number of total born at previous 
farrowing

Predicted stillborn rate by the 
model

Devia-
tions 
from 
average

Gilts and parity 2 Sn−1<8% TBn−1<15 3.6% -45%
15 ≤ TBn−1≤18 4.0% -38%
TBn−1>18 4.9% -25%

8%≤Sn−1≤15% TBn−1<15 4.7% -28%
15 ≤ TBn−1≤18 5.4% -27%
TBn−1>18 6.7% 3%

Sn−1>15% TBn−1<15 5.4% -17%
15 ≤ TBn−1≤18 6.9% 6%
TBn−1>18 8.5% 31%

Parities 3 and 4 Sn−1<8% TBn−1<15 4.9% -25%
15 ≤ TBn−1≤18 5.7% -12%
TBn−1>18 7.1% 9%

8%≤Sn−1≤15% TBn−1<15 6.7% 3%
15 ≤ TBn−1≤18 7.8% 20%
TBn−1>18 9.5% 46%

Sn−1>15% TBn−1<15 8.4% 29%
15 ≤ TBn−1≤18 9.8% 51%
TBn−1>18 11.6% 78%

Parities 5 and more Sn−1<8% TBn−1<15 7.2%* 11%
15 ≤ TBn−1≤18 8.4%* 29%
TBn−1>18 10.2%* 57%

8%≤Sn−1≤15% TBn−1<15 9.9%** 52%
15 ≤ TBn−1≤18 11.4%** 75%
TBn−1>18 13.1%** 102%

Sn−1>15% TBn−1<15 12.5%** 92%
15 ≤ TBn−1≤18 14.1%** 117%
TBn−1>18 15.7%** 142%
* + 1% if BFT ≤ 15 mm
** + 2% if BFT ≤ 15 mm

TBn−1: number of total born at previous farrowing, Sn−1: stillborn rates at previous farrowing, BFT: backfat thickness
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Through simulation analysis as well as sensitivity analy-
sis, we demonstrated that the Bayesian network model 
could assist decision makers in identifying management 
actions that have the greatest influence on the percentage 
of stillborn.

Conclusion
Three main risk factors were significant when consider-
ing stillborn rates: parity rank, total born and stillborn at 
previous farrowing. The optimal model for predicting the 
risk of producing stillborn also included backfat thick-
ness before farrowing especially for sows with five or 
more pregnancies. However, further studies are needed 
to confirm the findings obtained thus far. These promis-
ing results could allow farmers to classify sows according 
to their risk of stillbirth and manage them accordingly to 
reduce piglet mortality at farrowing.
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